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It is shown that, in case of special classes of static metrics, the fundamental solution
(Green's function) for the Klein-Gordon equation can be derived by means of the massless
fundamental solution. In applying the obtained result to the weak gravitational field the
corresponding Green's function is computed and some of its global properties are analyzed.

1.Introduction

The Green's function of the covariant wave equation is of great importance in

mathematical and physical applications. For example, the propagation of non-gravitational fields

(the Maxwell field, the massive scalar field, etc.) in a gravitational background can be

investigated by means of one [1]. Such situation may be found in the vicinity of superdense

astrophysical objects where the curvature of space-time is not negligible [2]. An important

problem of the wave propagation - the validity of Huygens` principle - can be analyzed with the

aid of Green's functions, too [3]. Further, if the radius of curvature is so small that one is

comparable with Compton length of the non-gravitational field, we must develop the

quantisation of corresponding field on a curved space-time. Now the covariant Green's functions

of the equations for the classical field are due to build up the different quantum theory quantities

[4,5].

The present paper deals with the Green's functions (G) for the massive scalar field, which

satisfy the covariant Klein-Gordon (KG) equation

L̂G(x,y):'(~%>R(x)%m 2)G(x,y)'δ4(x,y) (1)

with m the mass of the field and ξ a constant. Here d'Alembertian ~ =gik(x)LiLk, where gik(x) is

a metric tensor of a pseudo-Riemannian space V4 with a signature (+,-,-,-) and Li denotes the



covariant derivative. The scalar curvature has the opposite sign in comparison with the scalar

curvature in [5,6] and δ4(x,y) is Dirac delta distribution in V4. All differentiations of two-point

functions refer to the first argument and small Latin indices run from 0 to 3.

The theory of covariant Green's functions is proposed in the works [1,3,6]. According to

the mentioned works, on a causal domain Ω f V4 (see [6]), the retarded and advanced Green's

functions (fundamental solutions) are given by expression

G ±(x,y)' 1
4π

(W(x,y)δ±(σ(x,y))%V ±(x,y) ) .

The world function σ(x,y) is equal to half square root of the geodesic distance between the points

x,y. σ is negative for space-like intervals, positive for time-like ones and satisfies the equation

. Transport scalar W(x,y) coincides with the scalarised Van Vleck determinant andLiσLiσ'2σ

satisfies the transport equation with the additional condition [6]:

(2Liσ Li % (~σ&4))W(x,y)'0 , œx,y0Ω,
W(y,y)'1 .

(2)

Delta distributions δ±(σ(x,y)) have supports on the future light-cone C+(y) and on the past light-

cone C-(y) respectively. The tail terms V±(x,y) have supports in closures J±(y)= C±(y) 1 D±(y),

where D±(y) denotes interiors of the cones C±(y), and are determined by the characteristic

Cauchy problem [6]. In the region D±(y) the functions V± must satisfy homogeneous differential

equation

L̂V ±(x,y)'0 , (3)

which is completed by characteristic initial conditions

P̂V ±(x,y):' (2L iσLi % (~σ&2))V ±(x,y)'&L̂W(x,y),
œ x0C ±(y) .

(4)

We shall only discuss V+ because the corresponding results for V- can be deduced by

reversing the time orientation of Ω and hence we can omit the notation "±".

As the explicit calculation of G is quite difficult it has been done only for particular

metrics [5,6,8]. To get an information about the fundamental solutions in less special space-times

different approximation methods are valuable.



In Hadamard's method V(x,y) is expanded up as a power series in σ [6,7]. That technique

has been used by DeWitt [1,4], Günther [3], John [9] and others for different wave equations.

Such approach is true near the light-cone where σ60. For example, in discussing regularization

procedures in quantum field theory the Green's functions of near arguments (x6y) are used and

above-mentioned way is sufficient [4,5]. In other applications (particle production, interacting

fields), where the information about nonlocal effects is required, one would use a different

method.

An alternative expansion procedure is based on the assumption that we have a small

perturbation on the Minkowskian metric. Such approach was used for the massless scalar field

and vector field in the works [3,10 - 14]. In the present paper we shall apply the perturbation

method to the Klein-Gordon equation.

2. The first order approximation

We assume that the gravitational field is weak and the metric tensor can be expanded up

in the small parameter ε:

gik(x)'gik
0

(x)%εγik(x)%0(ε2 ) .

The parameter ε marks the order of deviation from the metric tensor of flat space-time .gik
0

(x)

Here and in the following, index 0 denotes the quantities of a flat space-time. All quantities

which depend on metric will be expanded up to the first order in ε, too. It must be pointed out
that  and the functions , ,  are given in the works [11,12]. W

0
/1 σ

0
σ
1
W
1

Now we shall use the approximation method to find the first order tail term for the Klein-

Gordon equation. Let us search for V of the form

V(x,y)'W(x,y)Z(σ(x,y))%εV
1
(x,y)%0(ε2) ,

where 

Z(σ)'& m
2σ
J1(m 2σ) (5)



εV
1

)'&
1
4πm
S

L̂M Wω(z)& 1
4πm

Σy

V
0
(x,z) L̂M Wµy(z) .

(6)

and J1 denotes the Bessel function of first order. The function (5) is similar to the tail term on a

Minkowskian space-time, .Z(σ
0
)'V

0
(x,y)

After expanding up the equations (3,4), the characteristic initial value problem for V
1

becomes:

ε L̂
0
V
1
(x,y)'&V

0
(x,y) L̂MW(x,y) ,

ε P̂
0
V
1
(x,y)'&L̂MW(x,y) ,

x0D %(y) ,

x0C %(y) ,

where  denotes the wave operator for the massless field, . As on the MinkowskianL̂M L̂M :' L̂&m 2

space-time the tail term of the fundamental solution for the KG equation is known, it is just ,V
0

we can solve the characteristic Cauchy problem for . Let us use the integral representation ofV
1

the solution of the non-homogeneous characteristic initial value problem, given in the book [6].

To simplify the notations, we shall set

Ω0 :'J &(x)_ J %(y) ,
Σx :'C &(x)_ J %(y) ,

Σy :'J &(x)_ C %(y) ,
S :'C &(x)_ C %(y) .

Note that MΩ0 = Σx U Σy and the 2-surface S = MΣx = MΣy. Now, according to [6],  is the sumV
1

of two terms:

V
1
'V

1

)%V
1

)) .

The first summand is derived from the initial condition: 

The other one is

εV
1

))'&
1
4πm

Σx

V
0
(z,y)L̂MWµx(z)&

1
4πm

Ω0

V
0
(x,z)V

0
(z,y)L̂MWµ(z).

(7)

Here , a Leray form µx and 2-form ω(z) are defined byW/W(z,y)



dσ(z,x) ¸ µx(z)' dσ(z,y)¸dσ(z,x)¸ω(z)'µ(z)

and µ(z) is an invariant volume element. It clearly follows from (5-7) that  and the secondV
1

))

integral in  will vanish when m=0. This implies that the first integral in (6) is the tail term forV
1

)

the massless field. It also coincides with the integral, calculated in the work [12].

However, in general case the integrals in (6,7) are cumbersome for the physical

applications. In the next sections we shall consider a static metric, when the tail term of G will

take more simple form and some physical conclusions will be possible.

3. Fundamental solution in case of the static metric

In this section we shall discuss the fundamental solution in case of the special classes of

static metric. We suppose that there exists a coordinate system, where the metric in question can

be given by the line element as

ds 2'dx 0 2
%gαβdx

αdx β . (8)

Greek indices run from 1 to 3 and gαβ depends on the space coordinates xα, only.

Usually the cosmological constant Λ is taken 0 and then such kind of metric does not

describe real gravitational field, which must satisfy the Einstein field equations. But the method

developed here should also be applicable to problems outside the gravitational physics (e.g.,

wave diffusion in non-homogeneous media). When one takes Λ … 0, the cosmological

applications of (8) are possible.

We shall use the property of the metric (8), that the corresponding regular term of the

fundamental solution for the KG equation is simply found by means of the regular term of the

fundamental solution for massless wave equation (VM). It simplifies the analyze of G because

VM has more elementary form, usually. For example, when VM is known for the metric,

conformal to the metric (8), that attribute can be used in case of the conformally invariant wave

equation (1) (ξ=-1/6). When the metric depends on a small parameter and the perturbation

technique is possible one can apply the mentioned relation, too.

Theorem. Let the metric of a pseudo-Riemannian space V4 be given by (8), and let x,y

be the points in a causal domain ΩdV4. Then the regular part of the fundamental solution for the

Klein-Gordon equation can be represented as



V(x,y)'W Z(σ)%VM(x,y)%m
σ

0

ÚVM(x,y)á Z(σ&s)ds , (9)

where .ÚV(x,y)á/V(x,y)*σ's

The proof of the theorem is quite elementary if one notes that in case of the metric (8) ~ σ

and W do not depend on the time-coordinate x0. Therefore they are independent of the choice of

the hypersurface σ = s = const $0 and we can write 

[ �LMW ]*σ'0' L̂MW .

Using the transport equation (2) and the fact that VM is the solution of the respective

characteristic Cauchy problem,

L̂MVM'0 , œ x0D %(y) ; P̂VM'&L̂MW , œ x0C %(y) ,

it is possible to show that the right term in the expression (9) satisfies the differential equation

(3) with the initial conditions (4). Therefore, by virtue of the uniqueness of the solution of the

characteristic initial problem [6], (9) is the regular term of G for the KG equation. We should

note that it is useful to realize the calculations in the coordinates x'0= σ, x'α= xα.

To illustrate the potentialities of the solution (9), let us concern the Einstein universe.

Taking into account that R=const, we can write the equation (1) as 

(~&
1
6
R%m (2 )G(x,y)'δ4(x,y) ,

where we have used the notation . As the Einstein universe is conformallym (2
'm 2% (ξ% 1

6
)R

flat, VM=0, and (9) gives us the known formula  with Z defined by (5), but mV ' WZ(σ)

replaced by m* (see, e.g.,[8]). The second demonstration about applications of (9) is the

conformal perturbation of the background metric (8), when the line element can be given of the

form

ds 2' (1%εΨ(x) )(dx 02
%gαβdx

αdx β)

and ε is a small parameter. As an example we shall turn to the weak static gravitational field in

the next section.



4. Fundamental solution in a weak static gravitational field

Let us discuss a weak static gravitational field with the metric

ds 2' (1%2Ψ(Pr))[dx 02
& (1&4Ψ(Pr ))dPr 2] . (10)

Here  is the metric of the Euclidean 3-space and Ψ( ) is the Newtonian potential, satisfyingdPr 2 Pr

the equation

∆Ψ(Pr )'4πiρ(Pr ) .

i is the gravitational constant, ρ - mass density and ∆ - the Laplacian belonging to the Euclidean

3-space. Here and in the following, linear terms in i will be taken into account, only.

It is seen that (10) is conformal to the line element

ds̃ 2'dx 0 2
& (1&4Ψ(Pr ))dPr 2 , (11)

which is evidently particular case of (8). Now we can do the conformal transformation in the

equation (1):

(~
-

&
1
6
R̃% C̃%m 2) G̃(x,y)' δ4

-

(x,y) .

Here "~" denotes the quantities which refer to the metric (11) and .C̃/ (ξ% 1
6

)R%2m 2Ψ

According to the theorem, proposed in the previous section, one can write

�V(x,y)'W̃ Z(σ̃)% ṼM%m
σ̃

0

Ú ṼM á Z(σ̃&s)ds ,

where  is the solution of the respective Cauchy problem: ṼM

L̂M
-

ṼM/ (~
-

&
1
6
R̃% C̃) ṼM'0 ,

P̂
-

ṼM'&L̂M
-

W̃ ,

x0D %(y) ,

x0C %(y) .



M(σ, Pq )/m
Σy

ρ(Px ( )dΣ0(Px
()

(15)

Note that  and  are proportional to i, thus they are small of the first order. It makes possibleR̃ C̃

to find  by the approximation method, proposed in the work [12] (see the section 2 of thisṼM

paper, too).

It is known that under a conformal transformation of the metric there is a simple relation

between the corresponding fundamental solutions [6]:

G(x,y)' (1%2Ψ(x))
&

1
2(1%2Ψ(y))

&
1
2 G̃(x,y). (12)

Using the transformation direction (12) and relations between the quantities ,  and σ, W, theσ̃ �W

regular part V can be expressed, in the first order in i, as the sum of two terms:

V(x,y)'W Z(σ)%V ((x,y) , (13)

where the first is similar to the tail term on Minkowskian space-time. The other one can be

written as

V ((x,y)/& ξ
4π m

S

Rω%m
σ

0

Ú *
S
Rω á Z(σ&s)ds %

%2i 1
σ
M(σ,Pq)

, x 0

%

%2im
σ

0

σ%q 2%s

s q 2%2s
M(s,Pq)

,s

Z(σ&s)ds .

(14)

Here we use the notation  and comma denotes the partial derivative. The calculations toPq/ Px& Py

obtain the expressions (13,14) are rather lengthy but not very complicated.

The quantity



is just that portion of the gravitating mass

which stays inside the ellipsoid

Σy / C+(y) 1 J-(x) (see the figure). dΣ0

denotes the time-like component of the

invariant surface element on Σy. Note that the

2-surface S / C+(y) 1 C-(x) is the boundary

of Σy.

It should be pointed out that the first

term on the right-hand side of (14) vanishes

in case of minimal coupling of the

gravitational and scalar fields (ξ=0). The

second summand in (14) coincides with the

regular part of the fundamental solution for

massless scalar field [14] and the last integral

describes the special action of the

gravitational field on the massive field.

It follows from (14,15) that V* has

some properties similar to those of VM. For example, when the source of the gravitational field

is localized in a world-tube Γ (the region A on the figure) and the space-time region

D / {x: x 0 J+(y), Σy 1 Γ = i}, then V*(x,y) vanishes for every x 0 D.

5. Point-mass approximation

The point-mass approximation for gravitational sources is applicable, if the space-like

distances of the points x and y from the world-tube Γ are much greater that the space-like

dimensions of Γ.

Let us now assume that the gravitational field is produced by a source A, concentrated

at the point of the 3-space . In that case the condition   correspondsP (' (Px () 0#q 0 <*Pq&Pr0*% r0

to the region D, defined in the previous section. Here  and . Now it can beq 0/x 0&y 0 Pr0/Px
(&Py

seen that V* does not vanish at the point  for the time coordinates ,x' (x 0,Px) x 0$y 0% r0%*Pq&Pr0*

only. Hence the tail term V* delayed behind the singular impulse Wδ(σ) by a time



. The analogous result for the massless scalar field is obtained in the work∆τ'*Pq&Pr0*% r0&q

[12] and for the electromagnetic field in the work [13].

At the instants  we shall be limited to the minimal coupling of theq 0 >*Pq&Pr0*% r0

gravitational and scalar fields (ξ=0). It is evident that V* takes the simple form when the point

 lies inside the 3-space region . Note that the "line" P ' (Px) σ1/
1
2

[(*Pq&Pr0*% r0)
2&q 2]>0 σ1'0

corresponds to the "shadow" A* of the source A on the figure, brought in the previous section.

If P 0 A*, the point-mass approximation cannot be applied to (14).

When  and  the formulae (14) and (15) give:q 0 >*Pq&Pr0*% r0 σ1 >0

V ((x,y)'&iMq 0σ&2(2%m 2σ)%

%iMm 2
m
σ

σ1

σ%q 2%s

s(σ&s) q 2%2s
J2(m 2(σ&s))ds .

This leads to an interesting conclusion in ξ=0 case: inside the space-time region

,  the structure of V* depends on q0,  and total mass M, only. The internalq 0 >*Pq&Pr0*% r0 σ1 >0 Pq

structure of the source A is of no consequence for this case.
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KOVARIANTSE KLEIN-GORDONI VÕRRANDI
RETARDEERITUD GREENI FUNKTSIOON

R.Mankin, A.Sauga

Teatud klassi staatiliste meetrikate korral on tuletatud lihtne seos kovariantse Klein-
Gordoni vôrrandi ja vastava ilma massita välja vôrrandi fundamentaallahendite (Greeni
funktsioonide) vahel. Toetudes saadud tulemustele, on leitud Klein-Gordoni vôrrandi
retardeeritud Greeni funktsioon nôrga gravitatsioonivälja lähenduses ja analüüsitud selle
môningaid globaalseid omadusi.

РЕТАРДИРОВАННАЯ ФУНКЦИЯ ГРИНА
КОВАРИАНТНОГО УРАВНЕНИЯ КЛЕЙНА-ГОРДОНА

Р.Манкин, А.Сауга

Показано, что в случае определенного класса статических метрик существует
простая связь между фундаментальным решением (функции Грина) ковариантного
уравнения Клейна-Гордона и фундаментальным решением волнового уравнения для
безмассового поля. На основе найденного результата получено выражение для



ретардированной функции Грина в приближении слабого гравитационного поля и
анализированы его некоторые глобальные свойства.


